首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1919篇
  免费   415篇
  国内免费   651篇
测绘学   58篇
大气科学   78篇
地球物理   886篇
地质学   1094篇
海洋学   551篇
天文学   5篇
综合类   131篇
自然地理   182篇
  2024年   5篇
  2023年   36篇
  2022年   64篇
  2021年   83篇
  2020年   101篇
  2019年   102篇
  2018年   104篇
  2017年   91篇
  2016年   105篇
  2015年   135篇
  2014年   128篇
  2013年   155篇
  2012年   142篇
  2011年   148篇
  2010年   151篇
  2009年   141篇
  2008年   149篇
  2007年   138篇
  2006年   172篇
  2005年   119篇
  2004年   127篇
  2003年   92篇
  2002年   68篇
  2001年   69篇
  2000年   40篇
  1999年   67篇
  1998年   32篇
  1997年   37篇
  1996年   32篇
  1995年   26篇
  1994年   28篇
  1993年   22篇
  1992年   20篇
  1991年   15篇
  1990年   10篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有2985条查询结果,搜索用时 15 毫秒
91.
基于二维斜坡平面滑动失稳力学模型,引入爆破荷载因素,建立了露天爆破荷载作用下岩质边坡失稳的尖点突变理论模型。根据建立的突变模型,探讨了爆破荷载幅值和爆破荷载频率对边坡稳定性的影响规律,导出了边坡的动态自稳临界高度,并提出了失稳的判据条件,结果表明:爆破荷载幅值越大,爆破荷载频率越小,后缘裂缝深度越大,边坡失稳的可能性越高;在爆破荷载作用下,边坡的稳定程度是动态变化的,且随着应力波入射角的增大,边坡失稳破坏的可能性不断提高。以大孤山露天矿内的两处边坡为例,计算了边坡的动安全系数及动态自稳临界高度,利用边坡当前实际的稳定情况验证了提出的边坡失稳判据的合理性,为预防露天矿爆破在开挖过程中边坡岩体的动力失稳提供了一定的理论支持。  相似文献   
92.
Suction buckets differ with their easy and cost-efficient installation technique from other foundation types for offshore wind turbines. For successful completion of their installation process, suction is essential, but the imposed seepage leads to the changes in states of the soil in and around the bucket. Especially, a loosening of soil inside the bucket affects the load carrying behaviour of bucket subjected to repetitive loading resulting from environmental conditions. In this study, the behaviour of buckets under cyclic axial compressive loads with considering a possible loosening and related changes in permeability of soil inside the bucket is investigated numerically. In the framework of finite element analysis, a fully coupled two-phase model and a hypoplastic constitutive model are used to describe the saturated sandy soil behaviour under repetitive loading. The porosity-permeability variation is taken into account by Kozeny–Carman relationship. Special attention is dedicated to load carrying behaviour of bucket top plate, inner and outer skirt as well as base and their changes resulting from a loosening of soil inside the bucket with variable aspect ratio. For this purpose, cyclic axial compressive loads which cause an attenuation and progressive failure of soil-bucket system response are considered. The main findings on the changes in load carrying behaviour of bucket are presented and discussed.  相似文献   
93.
In engineering practice, a rapid loading rate can result in ground failure when the strength of soft soils is relatively low, and a multistage loading scheme is always utilized to deal with this situation. Firstly, under a multistage load and the continuous drainage boundary, an analytical solution of excess pore-water pressure and consolidation degree is obtained by virtue of the superposition formula of excess pore-water pressure, and a more general continuous drainage boundary under arbitrary time-dependent load is developed. Then, a comparison with existing analytical solutions is conducted to verify the present solution. A preliminary attempt on applying the continuous drainage boundary into the finite element model is made, and the feasibility of the numerical model for the one-dimensional consolidation under the continuous drainage boundary is verified by comparing the results calculated by FEM with that from present analytical solution. Finally, the consolidation behavior of soil is investigated in detail for different int erface parameters or loading scheme. The results show that, in land reclamation projects, a horizontal drain should be placed close to the boundary with a smaller interface parameter to improve the consolidation efficiency. The degree of consolidation is also related to the applied time-dependent load and interface parameters.  相似文献   
94.
风机基础作为海上风机整体结构的重要组成部分,承受着上部风机所受到的风浪流荷载,并且对风机的安全性及可靠性至关重要。吸力式桶形基础由于其安装简单和可重复利用等优点,在海洋平台基础中得到了广泛应用,并逐步应用于海上风机基础中。但由于海上风机与海洋平台在海洋环境中的荷载工况有一定的差别,仍需要通过对其承载特性研究现状进行全面认识,以实现吸力式桶形基础在海上风机基础中的可靠应用。文中通过总结和评价现有研究对桶形基础在不同土体条件以及荷载条件下进行试验及数值模拟分析得到的研究结果,综述了静荷载和循环荷载作用下砂土和黏土中的吸力式桶形基础的承载特性研究现状,以及海上风机吸力式桶形基础的相关研究。文章展望了目前应用于海上风机基础的桶形基础仍缺乏的研究,为海上风机吸力式桶形基础的可靠应用及后续研究提供重要参考。  相似文献   
95.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
96.
Eutrophication of aquatic ecosystems is one of the most pressing water quality concerns in the United States and around the world. Bank erosion has been largely overlooked as a source of nutrient loading, despite field studies demonstrating that this source can account for the majority of the total phosphorus load in a watershed. Substantial effort has been made to develop mechanistic models to predict bank erosion and instability in stream systems; however, these models do not account for inherent natural variability in input values. To quantify the impacts of this omission, uncertainty and sensitivity analyses were performed on the Bank Stability and Toe Erosion Model (BSTEM), a mechanistic model developed by the US Department of Agriculture – Agricultural Research Service (USDA‐ARS) that simulates both mass wasting and fluvial erosion of streambanks. Generally, bank height, soil cohesion, and plant species were found to be most influential in determining stability of clay (cohesive) banks. In addition to these three inputs, groundwater elevation, stream stage, and bank angle were also identified as important in sand (non‐cohesive) banks. Slope and bank height are the dominant variables in fluvial erosion modeling, while erodibility and critical shear stress had low sensitivity indices; however, these indices do not reflect the importance of critical shear stress in determining the timing of erosion events. These results identify important variables that should be the focus of data collection efforts while also indicating which less influential variables may be set to assumed values. In addition, a probabilistic Monte‐Carlo modeling approach was applied to data from a watershed‐scale sediment and phosphorus loading study on the Missisquoi River, Vermont to quantify uncertainty associated with these published results. While our estimates aligned well with previous deterministic modeling results, the uncertainty associated with these predictions suggests that they should be considered order of magnitude estimates only. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
97.
98.
Nutrient loadings in many river catchments continue to increase due to rapid expansion of agriculture, urban and industrial development, and population growth. Nutrient enrichment of water bodies has intensified eutrophication which degrades water quality and ecosystem health. In this study, we carried out a trend analysis of total phosphorus and total nitrogen loads in the South Saskatchewan River (SSR) catchment using a novel approach to analyse nutrient time series. Seasonal analysis of trends at each of the water quality stations was performed to determine the relationships between annual flow regimes and nutrient loads in the catchment, in particular, the influence of the high spring runoff on nutrient export. Decadal analysis was also performed to determine the long-term relationships of nutrients with anthropogenic changes in the catchment. Although it was found that seasonal and historical variability of nutrient load trends is mainly determined by streamflow regime changes, there is evidence that increases in nitrogen concentration can also be attributed to anthropogenic changes.  相似文献   
99.
It is important to identify the non-stationarity in the relation between runoff and sediment load under the backdrop of the changing environment. This relation helps to further understand the mechanisms of runoff and sediment yield. A copula-based method was used to detect possible change points in the relation between runoff and sediment load in the Wei River Basin (WRB), China, where soil erosion is a very severe issue. The modified Mann-Kendall trend test method was applied to obtain the trends of runoff and sediment load spanning 1960–2010 at monthly and annual timescales. Finally, the causes of the identified non-stationarity of the relation between runoff and sediment load were roughly analyzed from the perspective of climate change and human activities. Results indicated that:(1) the runoff and sediment load in the Jinghe and Wei rivers were generally characterized by noticeably decreasing trends at both monthly and annual timescales;(2) both the Jinghe and Wei rivers had a common change point (2002), implying that the stationarity of the relation between runoff and sediment load in the Jinghe and Wei River was invalid; (3) human activities including increasing water consumption and growing application of soil conservation practices are dominant factors resulting in non-stationarity in the rela-tion between runoff and sediment load in the WRB. This study provides a new idea for identifying the non-stationarity of multivariate relation in the hydro-meteorological field under the background of the changing environment.  相似文献   
100.
Concentration–discharge (C-Q) relationships are an effective tool for identifying watershed biogeochemical source and transport dynamics over short and long timescales. We examined stormflow C-Q, hysteresis, and flushing patterns of total suspended sediment (TSS) and soluble reactive phosphorus (SRP) in two stream reaches of a severely impaired agricultural watershed in northeastern Wisconsin, USA. The upper watershed reach—draining a relatively flat, row crop-dominated contributing area—showed predominantly anti-clockwise TSS hysteresis during storms, suggesting that particulate materials were mobilized more from distal upland sources than near- and in-channel areas. In contrast, the incised lower watershed reach produced strong TSS flushing responses on the rising limb of storm hydrographs and clockwise hysteresis, signalling rapid mobilization of near- and in-channel materials with increasing event flows. C-Q relationships for SRP showed complex patterns in both the upper and lower reaches, demonstrating largely non-linear chemodynamic C-Q behaviour during events. As with TSS, anti-clockwise SRP hysteresis in the upper reach suggested a delay in the hydrologic connectivity between SRP sources and the stream, with highly variable SRP concentrations during some events. A broad range of clockwise, anti-clockwise, and complex SRP hysteresis patterns occurred in the lower watershed, possibly influenced by in-channel legacy P stores and connection to tile drainage networks in the lower watershed area. Total suspended sediment and SRP responses were also strongly related to precipitation event characteristics including antecedent precipitation, recovery period, and precipitation intensity, highlighting the complexity of stormflow sediment and phosphorus responses in this severely impaired agricultural stream.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号